NOVEL METABOLITES FROM THE MARINE GENUS CYSTOSEIRA – APPLICATION OF TWO-DIMENSIONAL $^{1}H^{-13}_{-C}$ Correlation to the structure elucidation

VINCENZO AMICO and MARIO PIATTELLI

Dipartimento di Scienze Chimiche dell'Università di Catania, V.le Doria 6, I-95125 Catania, Italy

PLACIDO NERI and GIUSEPPE RUBERTO

Istituto del C.N.R. per lo Studio delle Sostanze Naturali di Interesse Alimentare e Chimico-Farmaceutico, V.le Doria 6, I-95125 Catania, Italy

and

LUCIANO MAYOL

Dipartimento di Chimica delle Sostanze Naturali dell'Università di Napoli, Via Rodinò 22, I-80138 Napoli, Italy

(Received in UK 7 July 1986)

Abstract - Three novel metabolites of mixed biogenesis have been isolated from brown algae of the genus *Cystoseira*. Their structures have been determined by chemical transformations and spectral analysis, including 2D NMR spectroscopy.

In the course of our previous investigations on Mediterranean seaweeds for compounds with potential pharmacological activity, we have reported the isolation, from species belonging to the genus *Cystoseira*, of a number of tetraprenyl-toluquinol derivatives in which the terpenoid component has been variously functionalized to give open-chain, mono- and polycyclic structures.¹⁻⁴ The present paper deals with the structure determination of three novel representatives of this class of metabolites.

Amentol 1, $C_{27}H_{38}O_5$ (*m/z* 442.2715, calc. 422.2719), was isolated from *Cystoseira stricta* var. *amentacea* Bory as an optically active oil, $[a]_0 = +7.3^\circ$. It shows in the IR spectrum a band consistent with the presence of hydroxyl(s) (film, 3390 cm⁻¹), while the UV spectrum has absorptions at 290 (ϵ =3300) and 220 nm (ϵ =10400) indicative of a hydroquinol chromophore. The ¹³C NMR spectrum (Table 1) contains, besides the resonances for a tetrasubstituted aromatic ring, six quaternary carbons, three methines, six methylenes and six methyls. The ¹H NMR spectrum (Table 1) of 1 closely resembles that of a previously isolated *Cystoseira* metabolite, cystoketal 2,⁵ the main difference consisting in the absence of the AB pattern associated with the olefinic protons in the dihydrofuran ring, which is replaced by an ABX system [δ 2.37, dd (J=13 and 7.5 Hz), 2.10, dd (J=13 and 7.5 Hz) and 4.33, t (J=7.5 Hz); the last signal was shifted to δ 5.13 in the triacetate 3] assignable to a -CH₂-CHOH- fragment. These data suggested structure 1 (devoid of stereochemistry) for amentol, in which location of the secondary hydroxyl at C-14 rather then C-13, more plausible on biogenetic grounds, resulted from the presence of nOe interaction between the geminal methyls at C-15 and

Position	Amentol (1)			Amentol monomethyl ether (4)	
	ð.	δ _H (J)	H/C long-range correlation	å _c	δ _H (J)
1'	146.4s		H-3', H-5', Me-6'	150.6s	
2'	127.8s		2H-1	132.1s	
3'	114.2d	6.50d (3)	H-5'	114.3d	6.47d (3)
4'	148.9s		H-3', H-5'	151.8s	
5'	115.6d	6.53d (3)	H-3', Me-6'	115.6d	6.56d (3)
6'	125.8s		Me-6'	133.98	
1	30.1t	$[H_3 3.42dd (16, 8)]$ $[H_5 3.19dd (16, 6)]$	H-3'	27.9t	3.33d •(7.5)
2	123.9d	5.36dd (8, 6)	2H-4, 3H-20	125.0d	5.33t (7.5)
3	135.6s		2H-4, 3H-20	135.9s	
4	45.3t	2.69s	H-6, 3H-20	45.2t	2.65s
5	145.1s		2H-4, H-6	145.98	
6	109.5d	4.335	2H-4, 3H-19	109.1d	4.268
7	43.3s		3H-18, 3H-19	43.3s	
8	40.4t	1.50-1.80m	3H-19	40.5t	1.45-1.75m
9	20.4t	1.55m	2H-10	20.4t	1.50m
10	36.2t	1.30m, 1.80m	3H-18	36.2t	1.30-1.80m
11	46.3s		H-6, 3H-18, 3H-19	46.3s	
12	109.1s		3H-18	108.98	
13	41.7t	(H _a 2.37dd (13, 7.5) H _b 2.10dd (13, 7.5)		41.7t	(H _a 2.20 (overlap.) H _b 2.06dd (12,7.5)
14	77.3d	4.33t (7.5)	H _h -13, 3H-16, 3H-17	77.4d	4.36t (7.5)
15	83.4s		3H-16, 3H-17	83.1s	
16	28.2a	1.22s	3H-17	28.2q	1.22s
17	22.3q	1.13s	3H-16	22.2q	1.12s
18	19.5q	1.00s		19.3q	0.988
19	22.9q	1.10s		23.0q	1.08s
20	15.4g	1.72s	2H-4	15.4q	1.768
Me-6'	16.1g	2.165	H-5'	16.2q	2.22s
OMe	-			60.5q	3.66s

Table 1. 1 H and 13 C NMR data for amentol (1) and amentol 1'-methyl ether (4) (see Experimental section for details)

 $R = R' = R'' = COCH_s$

 $R = CH_3$; R' = R'' = H

 $R = R' = CH_1; R'' = H$

R = H6 $R = CH_3$ H-14, but not the C-13 methylene protons (Table 2). Chemical correlation with cystoketal 2 supported the proposed structure; indeed, methylation of the phenolic hydroxyls gave the dimethyl ether 5, which on subsequent dehydration afforded a compound (6) indistinguishable (UV, IR, MS, NMR, $[\alpha]$) from the methylation product of cystoketal. This result, in addition, settled the relative stereochemistry of all the chiral centres in 1, but the hydroxymethine carbon, which was deduced from the observation that H-14 and 18-Me are within nOe distance. Therefore, stereostructure 1 appeared conclusively determined for amentol. However, a recent report by French workers on the isolation from C. stricta and closely related species (C. mediterranea, C. tamariscifolia) of a metabolite, cystoseirol A, 6 which possesses the very same 1 H NMR spectrum as that of a semisynthetic compound obcained from cystoketal by chemical conversion into the corresponding chromane⁵ (significant differences are however observed in the ¹³C NMR and UV spectra) although it contains a totally different, rearranged diterpenoid moiety, prompted a structure elucidation of 1 independent from chemical interrelation with 2. One-bond ${}^{1}H_{-}^{13}C$ correlation (Table 1) permitted the assignment of the protonated carbons in the 13 C NMR spectrum of 1, while $^{1}H^{-12}$ long-range correlation identified all the quaternary carbons and established bond connectivities across them, allowing to define the carbon skeleton. In particular, C-3 was seen to correlate with 2H-4 and 3H-20, C-5 with 2H-4 and H-6, C-7 with 3H-18 and 3H-19, C-11 with H-6, 3H-18 and 3H-19, C-12 with 3H-18, and C-15 with 3H-16 and 3H-17. Correlation of C-14 with H_h -13, 3H-16 and 3H-17 secured the location of the secondary hydroxyl. The E configuration of the C-2 double bond was indicated by the value of the resonance of the relevant vinyl methyl (15.4 ppm) in the ¹³C NMR spectrum of 1, while the relative stereochemistry of the chiral centres was deduced from the nOe data (Table 2).

Since in the meanwhile we had the occasion to reisolate a sufficient amount of cystoketal, we measured two-dimensional heteronuclear spectra, both one-bond and long-range, also for this compound. They were in full agreement with the previously proposed structure and permitted unambiguous assignment of all the ¹³C resonances (see Experimental section).

Another of the new metabolites isolated from *C. stricta* var. *amentacea*, **4**, $[a]_0 = +2.4^\circ$, oily, had the molecular formula $C_{28}H_{40}O_5$ (HREIMS). Its spectral properties $[\lambda_{max}^{\text{EtOH}}(\varepsilon) 287$ (2400) and 222 nm (10500); ν_{max}^{file} 3400, 1700, 1615 cm⁻¹; ¹H and ¹³C NMR see Table 1] indicated a structure closely related to amentol (1), with a methoxyl replacing one of the phenolic hydroxyls. The value of the resonance of the methoxyl in the ¹³C NMR spectrum of **4** (60.5 ppm), considered in comparison with mo-

Amentol (1)			Strictaepoxide (7)		
Signal	irradiated	Signal enhanced	Signal irradiated	Signal enhanced	
	(ð 1.00s)	H-14 (ð 4.33t) H _b -13 (ð 2.10dd)	18-Me (ð 1.05s)	0H-12 (δ 4.09s) H _b -13 (δ 1.7bdd)	
19-Me	(ð 1.10s)	H-6 (ð 4.33s) H _b -13 (ð 2.10dd)	19-Me (ð1.18s)	H-8 (ð 4.40s) 0H-12 (ð 4.09s)	
16-Me	(ð 1.13s)	H-14 (ð4.33t)	16-Me (ð1.28s)	H _b -13 (ð2.09dd)	
17-Me	(ð 1.22s)	H-14 (ð4.33t)	17-Me (ð1.22s)	H-14 (ð 3.17dd)	
			H-14 (ð 3.17dd)	H _a -13 (ð 2.07dd) 17-Me (ð 1.22s)	
			H _a -13 (ð 2.07dd)	H _b -13 (ð1.76dd) H-14 (ð3.17dd)	

Table 2. Results of nOe experiments on amenaol (1) and strictaepoxide (7)

Position	ት	δ _H (J)	H/C long-range correlation
1'	146.95		H-3'. H-5', Me-6'
2'	127.3s		2H-1, OH-1'
3'	113.2d	6.51d (3)	H-5', 2H-1
4'	153.0s		H-3', H-5', OMe-4'
5*	114.2d	6.554 (3)	H-3', Me-6'
6'	125.7s		Me-6', OH-1'
1	31.0t	H_a 3.43dd (16, 8) H_b 3.26dd (16, 7)	H-3'
2	124.0d	5.42dd (8, 7)	2H-4, 3H-20
3	135.5s		2H-4, 3H-20
4	45.0t	H _a 2.78 H _b 2.69	H-6, 3H-20
5	145.0s	0	2H-4, H-6
6	109.8d	4.40s	2H-4, 3H-19
7	43.45		H-6, 3H-18, 3H-19
8	40.5t	1.50-1.70m	3H-19
9	20.0t	1.55m	
10	36.1t	1.35m, 1.85m	3H-18
11	47.95		H-6, OH-12, 3H-18, 3H-19
12	102.55		OH-12, 2H-13, 3H-18
13	33.8t	H _a 2.07dd (14, 3.5) H _b 1.76dd (14, 8.5)	OH-12, H-14
14	60.5d	3.17dd (8.5, 3.5)	H _b -13, 3H-16, 3H-17
15	57 . 9s		H _b -13, 3H-16, 3H-17
16	18.9q	1.28s	3H-17
17	24.2q	1.226	3H-16
18	19.1q	1.05s	
19	22.9q	1.18s	H-6 (H-8)
20	15.7q	1.79s	2H-4
Me-6'	16.2q	2.18s	H-5'
OMe	55.5q	3.71s	
OH-1'		5.25s	
0H-12		4.09s	

Table 3. ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR data for strictaepoxide 7 (see Experimental section for details)

The third novel compound, strictaepoxide (7), was isolated from *C. stricta* (Mont.) Sauv. as an optically active clear liquid, $[\alpha]_D = -5.1^\circ$. HREIMS established the molecular formula $C_{28} H_{40} O_5$. The compound displayes UV bands at 289 (ϵ =3600) and 220 nm (ϵ =12200), and IR absorption for hydroxyl at 3430 cm⁻¹. The ¹H and ¹³C NMR spectra of 7 (Table 3) were strongly reminiscent of amentol (1), the main difference being significant upfield shifts for H-14 (from δ 4.33 in 1 to 3.17 in 7), and for C-14 and C-15 (from 77.3 and 83.4 ppm in 1 to 60.5 and 57.9 ppm in 7, respectively). These data suggested that C-14 and C-15 were embodied in an oxirane ring and therefore strictaepoxide was formulated as 7. One-bond and long-range shift correlations (Table 3) definitely proved this structure. Concerning the stereochemistry, the *E* geometry of the C-2 double bond was desumed from the chemical shift (δ 15.7) of the methyl at C-3, while the relative configuration of the chiral centres at C-7, C-11 and C-12 was inferred from nOe data (Table 2), which require the angular methyls and the hemiketal hydroxyl to be on the same face of the molecule. Configuration at the remaining chiral centre (C-14) was assigned as drawn on the basis of the nOe interrelations of H-14 with H_a-13 and 17-Me, and of H_b-13 with 16-Me and 18-Me, assuming for the distal isoprenoid unit a preferred conformation (Fig. 1) stabilized by hydrogen bonding (the chemical shift of the OH-12 signal in the ¹H NMR spectrum of 7 is in fact independent from concentration).

EXPERIMENTAL

General methods. EIMS were determined at 70 eV on a Kratos MS-50S apparatus. UV spectra were recorded on a Perkin-Elmer mod. 330 and IR spectra on a Perkin-Elmer mod. 684 spectrophotometers. NMR spectra were measured in $CDCl_3$ solution on a Bruker WM-250 instrument operating at 250 and 62.5 MHz for ¹H and ¹³C, respectively. Chemical shifts are quoted in ppm (δ) relative to TMS. Multiplicity of ¹³C NMR resonances were determined by DEPT experiments. Long-range heteronuclear correlations were performed with maximum polarization for 7.5 Hz, leading to ²J (geminal coupling) and ³J (vicinal coupling) spots in the same spectrum.⁸ Optical rotations were determined with a Perkin-Elmer 141 polarimeter using a 10 cm microcell. Preparative liquid chromatography (PLC) were carried out on a Jobin-Yvon LC Miniprep.

Plant material. Cystoseira stricta (Mont.) Sauv. was collected on rocks at about 1 m depth in March 1985 at Acicastello, Catania, Sicily. C. stricta var. amentacea Bory was harvested in March 1985 at Castelluccio, Syracuse, Sicily, on rocks at about 1 m depth. Voucher specimens are deposited at the Herbarium of the Department of Botany, Palermo, Italy.

Extraction and purification. Shade-dried and ground plant material (1 kg) was extracted x3 with CH_2Cl_2 at room temp. with continuous stirring. The pooled extracts were evaporated to give a dark green oil, which was chromatographed on an open column of Si gel (4 x 120 cm) using increasing concentrations of Et_20 in hexane as solvent system. The appropriate fractions were further purified by PLC; from *C. stricta* var. *amentacea* were obtained amentol 1 (260 mg) and amentol 1'-methyl ether 4 (335 mg), while *C. stricta* gave strictaepoxide 7 (1.2 g).

Amentol 1. Oily, $[\alpha]_{20}(\lambda)$ +7.3° (589), +7.2° (578), +8.5° (546) (c = 1.6 in EtOH); MS m/z (%): 442 (0.5), 424 (13), 274 (23), 256 (3), 235 (5), 217 (9), 205 (3), 191 (3), 190 (6), 177 (65), 175 (16), 150 (100), 137 (49), 135 (23), 123 (8), 121 (7), 109 (16), 107 (8), 95 (23), 91 (8), 83 (13), 81 (13), 69 (23), 55 (16), 43 (44), 41 (18); ¹H and ¹³C NMR see Table 1.

 ^{13}C NMR assignment for cystoketal 2. 2D heteronuclear correlation experiments, both one-bond and long-range, allowed to assign unambiguously the ^{13}C signals in the NMR spectrum (CDCl₃, TMS) of cystoketal as follows: δ 153.1s (C-4'), 146.8s (C-1'), 146.2s (C-5), 139.9d (C-14), 135.7s (C-3), 127.4s (C-2'), 126.5d (C-13), 125.7s (C-6'), 123.5d (C-2), 115.1s (C-12), 114.1d (C-5'), 112.9d (C-3'), 109.3d (C-6), 87.8s (C-15), 55.6q (-OMe), 46.2s (C-7), 45.0t (C-4), 43.1s (C-11), 40.5t (C-8), 36.1t (C-10), 30.6t (C-1), 28.7q (C-16), 26.2q (C-17), 22.6q (C-19), 20.3t (C-9), 20.1q (C-18), 16.1q (Me-6'), 15.7q (C-20).

Amentol 1'-methyl ether 4. 0ily, $[a]_{20}(\lambda)$ +2.4° (589), +2.4° (578), +2.6° (546), +2.9° (436) (c = 5.7 in EtOH); HREIMS: M* 456.2872 (calc. for C₂₈H₄₀O₅ 456.2875); MS m/z (%): 456 (3), 438 (34), 228 (6), 274 (5), 256 (3), 233 (34), 205 (19), 191 (22), 190 (28), 177 (19), 175 (28), 168 (94), 151 (75), 150 (100), 137 (75), 135 (43), 123 (62), 121 (31), 109 (31), 107 (16), 95 (50), 91 (12), 81 (22), 71 (31), 69 (31), 55 (22), 43 (62), 41 (31); ¹H and ¹³C NMR see Table 1. Strictaepoxide 7. 0ily, $[a]_{20}(\lambda)$ -5.1° (589), -5.4° (578), -6.6° (546) (c = 5.6 in EtOH);

Strictaepoxide 7. Oily, $[a]_{20}$ (λ) -5.1° (589), -5.4° (578), -6.6° (546) (c = 5.6 in EtOH); HREIMS: M⁺ 456.2870 (calc. for C₂₈H₄₀O₅ 456.2875); MS m/z (%): 456 (13), 438 (7), 420 (7), 251 (7), 233 (20), 206 (15), 205 (11), 192 (8), 191 (48), 190 (8), 189 (24), 175 (9), 151 (28), 150 (38), 137 (24), 135 (12), 123 (12), 113 (75), 109 (10), 96 (10), 95 (100), 93 (8), 91 (10), 85 (9), 81 (15), 71 (14), 69 (17), 67 (17), 55 (17), 43 (88), 41 (28); ¹H and ¹³C NMR see Table 3.

Acetylation of 1 to give 3. Amentol 1 was acetylated overnight at room temp. with Ac₂O-Py. Purification by PLC (LiChroprep Si-60, 25-40 μ m, Et₂O-C₆H₁₄,18:82) gave pure 3; HREIMS: M⁺ 568.7110 (calc. for C₃₃ H₄₄ O₈ 568.7102); ¹H NMR: ð 6.82 and 6.79 (AB system, each 1H, d, J=3 Hz, H-5' and H-3'), 5.31 (1H, t, J=7 Hz, H-2), 5.13 (1H, dd, J=7 and 4.5 Hz, H-14), 4.26 (1H, s, H-6), 3.19 (2H, d, J=7 Hz, H-1), 2.65 (2H, bs, H-4), 2.46 (1H, dd, J=14 and 7 Hz, H_a-13), 2.32 (3H, s, CH₃CO-), 2.26 (3H, s, CH₃CO-), 2.18 (1H, dd, J=14 and 4.5 Hz, H_b-13), 2.14 (3H, s, Me-6'), 2.06 (3H, s, CH₃CO-), 1.63 (3H, s, H-20), 1.31 and 1.14 (each 3H, 2s, H-16 and H-17), 1.10 and 1.00 (each 3H, 2s, H-18 and H-19).

Methyl iodide methylation. MeI (0.1 ml) and K_2CO_3 were added to a solution of compound (10 mg) in Me₂CO and the mixture refluxed for 3 hr. The ppt was filtered off, the solution evaporated and the residue was further purified by PLC. Methylation of 1 and 4 gave the same compound (5), while 2 afforded 6. Compound 5: ¹H NMR (80 MHz, CDCl₃, TMS): δ 6.43 and 6.34 (AB system, each 1H, d, J=3 Hz, H-5' and H-3'), 5.20 (1H, t, J=7.5 Hz, H-2), 4.12 (1H, s, H-6), 4.05 (1H, t, J=7.5 Hz, H-14), 3.63 and 3.57 (each 3H, 2s, 2 x OMe), 3.25 (2H, d, J=7.5 Hz, H-1), 2.56 (2H, s, H-4), 2.20 (3H, s, Me-6'), 2.20 (1H, overlapped, H_a-13), 2.05 (1H, dd, J=12 and 7.5 Hz, H_b-13), 1.62 (3H, s, H-20), 1.20 (3H, s, H-16), 1.10 (3H, s, H-17), 1.05 (3H, s, H-19), 0.98 (3H, s, H-18). Compound 6: ¹H NMR: δ 6.58 and 6.54 (AB system, each 1H, d, J=3 Hz, H-5' and H-3'), 6.01 and 5.61 (AB system, each 1H, d, J=5.5 Hz, H-14 and H-13), 5.38 (1H, t, J=7 Hz, H-2), 4.31 (1H, s, H-6), 3.73 and 3.66 (each 3H, 2s, 2 x OMe), 3.34 (2H, m, H-1), 2.72 and 2.63 (AB system, each 1H, d, J=15 Hz, H_a-4 and H_b-4), 2.27 (3H, s, Me-6'), 1.70 (3H, s, H-20), 1.32 and 1.28 (each 3H, 2s, H-16 and H-17), 1.13 (3H, s, H-19), 0.88 (3H, s, H-18).

Dehydration of 5 to give 6. A solution of 5 (10 mg) in benzene (10 ml) was refluxed for 2 hr in the presence of Florisil (400 mg). After filtration and evaporation of the solvent, the residue was purified by PLC to give a product indistinguishable from 6 obtained by methylation of cystoke-tal 2.

Acknowledgments. The work was financially supported by the Ministero Pubblica Istruzione (Rome). The authors wish to thank Prof. G. Giaccone (University of Palermo) for classification of plant material.

REFERENCES

¹V. Amico, F. Cunsolo, M. Piattelli and G. Ruberto, *Phytochemistry* 24, 1047 (1985).

²V. Amico, F. Cunsolo, M. Piattelli and G. Ruberto, *Phytochemistry 24*, 2663 (1985) and references cited therein.

³V. Amico, F. Cunsolo, L. Mayol, M. Piattelli and G. Ruberto, J. Org. Chem., submitted.

⁴V. Amico, G. Oriente, P. Neri, M. Piattelli and G. Ruberto, *Phytochemistry*, submitted.

⁵V. Amico, F. Cunsolo, G. Oriente, M. Piattelli and G. Ruberto, J. Nat. Prod. 47, 947 (1984).

⁶C. Francisco, B. Banaigs, L. Codomier and A. Cave, *Tetrahedron Letters* 26, 4919 (1985).

⁷R.S. Capon, E.L. Ghisalberti and P.L. Jefferies, *Phytochemistry 20*, 2598 (1981).

⁸H. Kessler, C. Griesinger, J. Zarboch and H.R. Loosli, J. Magn. Reson. 57, 331 (1984).